4,787 research outputs found

    Electronic detection of weak spectrum links

    Get PDF
    Recording spectroscopic data by digital and analog electronic systems - Detection of weak spectrum line

    Photoelectric Detection of Weak Spectrum Lines

    Get PDF
    Photoelectric detection of weak spectral lines by application of digital and gated filter electronic devices to optical spectrometr

    Apollo experiment S-217 IR/radar study of Apollo data

    Get PDF
    An experiment using Earth based remote sensing radar, infrared eclipse, and color difference data to deduce surface properties not visible in Apollo photography is reported. The Earth based data provided information on the small scale (centimeter sized) blockiness and on the surface chemical composition (titanium and iron contents) of the lunar surface. These deduced surface properties complemented the new Apollo photography, leading to refined geologic interpretations of the lunar surface

    Faddeev calculations of break-up reactions with realistic experimental constraints

    Full text link
    We present a method to integrate predictions from a theoretical model of a reaction with three bodies in the final state over the region of phase space covered by a given experiment. The method takes into account the true experimental acceptance, as well as variations of detector efficiency, and eliminates the need for a Monte-Carlo simulation of the detector setup. The method is applicable to kinematically complete experiments. Examples for the use of this method include several polarization observables in dp break-up at 270 MeV. The calculations are carried out in the Faddeev framework with the CD Bonn nucleon-nucleon interaction, with or without the inclusion of an additional three-nucleon force.Comment: 18 pages, 9 figure

    Experimental search for evidence of the three-nucleon force and a new analysis method

    Full text link
    A research program with the aim of investigating the spin dependence of the three-nucleon continuum in pd collisions at intermediate energies was carried out at IUCF using the Polarized INternal Target EXperiments (PINTEX) facility. In the elastic scattering experiment at 135 and 200 MeV proton beam energies a total of 15 independent spin observables were obtained. The breakup experiment was done with a vector and tensor polarized deuteron beam of 270 MeV and an internal polarized hydrogen gas target. We developed a novel technique for the analysis of the breakup observables, the sampling method. The new approach takes into account acceptance and non-uniformities of detection efficiencies and is suitable for any kinematically complete experiment with three particles in the final state.Comment: Contribution to the 19th European Few-Body Conference, Groningen Aug. 23-27, 200

    The Impact of Massive Stars on the Formation of Young Stellar Clusters

    Get PDF
    Massive OB stars play an important role in the evolution of molecular clouds and star forming regions. The OB stars both photo--ionize molecular gas as well as sweep up and compress interstellar gas through winds, ionization fronts, and supernovae. In this contribution, we examine the effect massive stars have on the formation of young stellar clusters. We first discuss the processes by which OB stars destroy cluster--forming molecular cores, and hence terminate star formation. We overview observational evidence that OB stars forming in young stellar clusters destroy their parental cores on a timescale of 0.1 Myr, and we discuss some of the implications of this result. We then summarize extensive observations of the NGC 281 molecular cloud complex, and present evidence that two types of triggered star formation are occurring in this complex. Our goal is to underscore the impact massive stars have on cluster formation over distances ranging from 0.1 pc to 300 pc.Comment: 8 pages, Latex, to appear in "Hot Star Workshop III: The Earliest Phases of Massive Star Birth" (ed. P.A. Crowther

    Star Formation at z=2.481 in the Lensed Galaxy SDSS J1110+6459, I: Lens Modeling and Source Reconstruction

    Get PDF
    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z~2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z = 0.659, with a total magnification ~30x across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray trace the model to the image plane, convolve with the instrumental point spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray tracing, by accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift.Comment: 19 pages, 12 figures, accepted to Ap
    corecore